Энергетика что это – Энергетика — Википедия. Что такое Энергетика

Содержание

Энергетика — Википедия. Что такое Энергетика

Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]

  Уголь/Торф (39,3 %)

  Природный газ (22,9 %)

  Гидро (16,0 %)

  Ядерная (10,6 %)

  Нефть (4,1 %)

  Прочие (Возобн.) (7,1 %)

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на

традиционную и нетрадиционную.

Доля различных источников
в мировом производстве электроэнергии[1]
УгольПриродный газГЭСАЭСНефтьПрочиеВсего
1973 год38,3 %12,1 %20,9 %3,3 %24,8 %0,6 %6 131 ТВт*ч
2015 год39,3 %22,9 %16,0 %10,6 %4,1 %7,1 %24 255 ТВт*ч

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[4]

.

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция[8], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония

[9][10].

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность

[2]. Направления нетрадиционной энергетики[4]:

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[11]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %

[12]), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[13].

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[14]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[15].

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами

[16]. Такие условия могут быть реализованы в большинстве стран мира[17] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый
производственный пар
с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
  • Печное.

Тепловые сети

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей

[2].

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %[18].Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %[19].

Газообразное

Естественным топливом является природный газ, искусственным:

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

Твёрдое

Естественным топливом являются:

Искусственным твёрдым топливом являются:

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[20], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[2][21].

Энергетические системы

Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[22].

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[23]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[24] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[15][25].

См. также

Примечания

  1. 1 2 2017 Key World Energy Statistics (PDF). http://www.iea.org/publications/freepublications/ 30. IEA (2017).
  2. 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
  3. ↑ То есть мощность одной установки (или энергоблока).
  4. 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
  5. ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
  6. ↑ Данные за 2011 год.
  7. ↑ World Energy Perspective Cost of Energy Technologies (англ.). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Проверено 29 июля 2015.
  8. ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
  9. В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
  10. 1 2 Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
  11. ↑ Эти понятия могут различно трактоваться.
  12. ↑ Данные за 2005 год
  13. А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
  14. ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
  15. 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
  16. ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
  17. ↑ В зависимости от климата в некоторых странах нет такой необходимости.
  18. ↑ https://web.archive.org/web/20110626032546/http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf
  19. ↑ Архивированная копия. Проверено 4 декабря 2014. Архивировано 15 декабря 2012 года.
  20. ↑ Диаметром около 9 мм и высотой 15—30 мм.
  21. Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
  22. Энергосистема — статья из Большой советской энциклопедии. 
  23. ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
  24. ↑ Не более нескольких километров.
  25. Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.

Ссылки

wiki.sc

Что такое энергетика? Чем занимается энергетик :: SYL.ru

Энергетика оказывает существенное влияние на промышленность, в особенности в наше время. Для любого производственного предприятия, как, впрочем, и всей городской инфраструктуры, важен стабильный и бесперебойный режим работы. А это уже зависит от эффективной деятельности энергопроизводящих компаний. За этим тщательным образом следят энергетики. Причем данная профессия стала даже престижной, однако на специалиста еще возложена большая ответственность. Но что такое энергетик? Хороший вопрос, который требует продуманного ответа.

Небольшая историческая справка

Вне всякого сомнения, первым энергетиком по праву можно считать человека, который смог открыть и познать природу электрической энергии. Речь идет о Томасе Эдисоне. В конце XIX столетия им была создана целая электрическая станция, где было множество сложных устройств и конструкций, за которыми необходимо неусыпно следить. Немного позднее Эдисон открывает компанию, в которой было налажено производство электрических генераторов, кабелей и лампочек.

И с этого момента времени человечество осознало всю пользу электричества. Появилась потребность в технически грамотных специалистах, которые будут контролировать происходящие процессы на производстве. В наше время электроэнергия – это необходимый атрибут для полноценной деятельности и комфортного существования людей во всем мире.

Страшно даже представить себе, что будет, если все компании, производящую жизненно необходимую электроэнергию, вдруг остановят свою работу из-за аварии. Именно поэтому и стала одной из самых востребованных такая профессия, как энергетик дома (жилого) или какого-либо предприятия.

Важная специальность

Главная особенность данной профессии – это высокая степень риска, ведь человеку приходится по долгу службы иметь дело с высоковольтными приборами и сетями. А здесь есть вероятность получить серьезный удар электрическим током. При этом существует две категории этой профессии:

  • обычный специалист;
  • инженер-энергетик.

С простым специалистом все понятно – это человек со средним образованием в данной области, который работает по своему профилю не более чем 5 лет и еще пока не получил повышение по должности.

Что касается инженера-энергетика, то здесь все не так просто. Для такого звания нужно высшее образование, а стаж работы должен быть не менее 3 лет. К тому же у него гораздо больше обязанностей, что и делает эту должность более престижной. Именно ее мы и будем рассматривать.

Обязанности энергетика

Выработка тепла или электричества посредством ТЭЦ, АЭС, ГЭС — самая главная сфера на сегодня, за что следует благодарить министерство энергетики многих стран мира. Усилиями многих крупных исследовательских центров ведутся разработки в области получения нового вида энергии. Некоторые способы пока еще только в теории, а до промышленных масштабов и вовсе далеко.

К тому же в настоящее время тепловой и электрический виды энергии легче всего создавать, а также передавать на большие расстояния посредством сетей и распределять их между потребителями.

А так как от тепла и электричества зависит функционирование тех или иных систем и инфраструктуры в частности, необходима бесперебойная работа соответствующего оборудования. Именно в этом и заключается главная обязанность людей данной профессии.

На предприятиях по выработке электрической и тепловой энергии специалист ответственен за организацию и контроль технологического процесса и за его распределение. Помимо этого, он принимает непосредственнее участие в монтаже оборудования и производстве пусконаладочных работ. Немного схожие обязанности и у энергетика ЖКХ.

Энергоустановки промышленного назначения могут представлять серьезную опасность, а поэтому на плечи энергетиков возлагается и обеспечение безопасности при работе с таким оборудованием.

Решение важных задач

Большинство электростанций на территории России были построены более полувека назад, в связи с чем такие объекты нуждаются в срочном техническом перевооружении. И тут перед энергетиками встает сложнейшая задача: как при минимальных затратах можно получить новые генерирующие мощности, которые будут выдавать максимальный КПД?!

На самом производстве таким специалистам тоже имеется подходящая работенка. Обслуживание всех тепловых и электрических распределительных сетей предприятий, включая и такие параметры, как напряжение, давление и температура – это все их прерогатива.

Вот еще небольшой список задач, какие энергетик тоже должен выполнять:

  • Ведение контроля над состоянием вверенного оборудования.
  • Составление графика потребления электричества и нагрузок.
  • Проверка состояния энергозащитных систем и автоматики.
  • Обеспечение безопасности на предприятиях.
  • Подготовка документации на заключение соглашений в отношении сторонних организаций в сфере оказания услуг и прочих необходимых работ.
  • Контроль проведения ремонтных работ оборудования.
  • Внедрение опыта зарубежных и более развитых компаний в деятельность предприятия.
  • Выполнение поручений вышестоящего руководства, коим является главный инженер-энергетик.

В стране ведется активное техническое перевооружение энергетических объектов, что требует применения самого современного и эффективного оборудования. Энергетикам необходимо учитывать все имеющиеся в наличии технологии, чтобы каждый грамм топлива не сгорал впустую.

Что должен знать специалист

К слову сказать, в городе Братске Энергетик – это жилой район, который строился для рабочих гидроэлектростанции. Впрочем, такое звучное название можно встретить и в других местах России. Но вернемся к нашей теме.

Чтобы человеку стать ведущим специалистом по данному направлению, он обязан получить высшее образование по одному из профилей в сфере энергетики, которых немало. Также ему необходимо ознакомиться со всей нормативно-технической документацией, которая относится к эксплуатируемой энергоустановке. Цена ошибки здесь очень высока!

Помимо этого, специалист должен в подробностях изучить технические характеристики вверенного оборудования и понимать всю суть протекающего в нем технологического процесса. В противном случае невозможно грамотно эксплуатировать оборудование на станциях, котельных и прочих подобных предприятиях.

В наше время активно развиваются информационные технологии. Поэтому специалист должен обладать навыками владения компьютерного оборудования. И речь идет не только о специализированном программном обеспечении, чтобы просматривать или создавать рабочие чертежи. Также это сложные автоматизированные системы управления.

Но что такое энергетик, в чем залог его успеха? Впрочем, это касается любой другой профессии. Это — совершенствование собственных знаний и повышение уровня навыков.

Востребованность на рынке труда

Некоторые профессии перестают быть актуальными, что связано с быстрыми темпами развития технического прогресса и науки. Только это никоим образом не коснется данной специальности. Разве что через несколько десятков лет человечество сможет приручить другие способы получения энергии. Но даже и в этом случае такие люди будут всегда нужны.

Абсолютно все промышленные предприятия нуждаются в электроэнергии и теплоносителе. Поэтому не обойтись без соответствующих служб. Если у кого-то есть еще сомнения, то вот явные подтверждения высокой востребованности:

  • Любой вид энергии нужно для начала получить, где это и происходит в тепловых, атомных и гидравлических электростанциях – нужны новые специалисты.
  • Всю страну в буквальном смысле опутывают обширные энергетические сети, за которыми нужен своевременный уход, – работа для энергетиков.
  • Также нужно установить оборудование, дающее драгоценную энергию, – тоже нужны специалисты.

Перечислять можно очень долго, и на то, чтобы полностью раскрыть, что такое энергетик, уйдет много времени. Тем не менее факт налицо: без таких людей прогресс бы не достиг того совершенства, как сегодня.

Возможные недостатки

В нашем мире у всего есть свои преимущества и недостатки. Пока до сих пор еще не удалось создать что-либо по-настоящему уникальное, что можно назвать одним словом – идеал. То же самое касается и профессий – у каждой свои плюсы и минусы. Что касается энергетиков, то самый очевидный недостаток – это большая ответственность.

К тому же процесс получения и потребления энергии непрерывен. В связи с чем любая ошибка неизбежно приводит к серьезному ущербу. Ничто не совершенен в этом мире, есть люди, которые не отличаются особой внимательностью и бывают рассеяны. В сфере энергетики они долго не задерживаются.

Это та область человеческой жизнедеятельности, которая не потерпит к себе халатного обращения и безразличия. Возможно, для кого-то перечисленные минусы покажутся несущественными. Но тот, кто приобщился к этой профессии, и она ему нравится – это уже навсегда. Он по праву может гордиться своей работой!

Положение дел в отечественной сфере энергетики

По данным министерства энергетики, на территории Российской Федерации энергетика является важной отраслью для развития отечественной промышленности. С электроэнергией непосредственным образом связана экономика страны. Ни одно производство не обходится без такого ценного источника. Однако российская энергетика сталкивается с определенными проблемами. Но разрешаемы ли он? И какие перспективы имеются в этой сфере человеческой деятельности?

Проблемная ситуация

В настоящий момент времени энергетика Россия находится в первой десятке стран мира по объему производимого электричества и наличию крупных запасов энергоресурсов. В последние годы отечественные специалисты пока еще не могут предоставить стоящие разработки. Дело в том, что текущее лидерство обусловлено стараниями проектов, которые были успешно реализованы еще во времена СССР. Первое, что появилось – это ГОЭЛРО, затем АЭС. Одновременно с этим разрабатывались сибирские природные ресурсы.

Главная проблема энергетики России заключается в оборудовании. Средний его возраст на ТЭС насчитывает более 30 лет, при этом 60 % турбин и даже больше свой ресурс уже выработали. ГЭС уже работают более 35 лет, причем лишь 70 % всего оборудования рассчитано на больший срок службы, тогда как остальная часть свое уже отработало.

В результате существенно снижается КПД таких объектов. Как отмечают исследователи, если ничего не предпринимать, то российскую энергетику ожидает полный коллапс.

Альтернативный вариант

Будущие перспективы пока не радуют отечественных энергетиков: согласно произведенной оценке каждый год внутренний спрос на электроэнергию будет увеличиваться на 4 %. Однако с действующими мощностями решить задачу такого прироста очень сложно.

Однако выход есть, и он заключается в активной разработке альтернативной энергетики. Что под этим понимается? Это установки по выработке энергии (в основном электрической) посредством таких источников:

  • солнечный свет;
  • ветер.

В последнее время вопросом изучения и освоения альтернативных способов в области энергетики занимаются многие страны по всему миру. Обычные источники недешевы, а ресурсы рано или поздно закончатся. Более того, работа таких объектов, как ТЭС, ГЭС, АЭС влияет на экологическую обстановку всей планеты. В марте 2011 года случалась крупная авария на АЭС Фукусима, причиной которой послужило сильное землетрясение с образованием цунами.

Подобный инцидент был и на Чернобыльской АЭС, но лишь после происшествия в Японии многие государства стали отказываться от атомной энергетики.

Энергия солнца

Что характерно для данного направления, так это безграничные запасы, ведь солнечный свет – это неисчерпаемый и возобновляемый источник, который всегда будет, пока живет солнце. А его ресурса хватит еще на протяжении нескольких миллиардов лет.

Вся его энергия возникает в самом центре – ядре. Именно здесь атомы водорода преобразуются в молекулы гелия. Данный процесс протекает при колоссальных значениях давления и температуры:

  • 250 миллиардов атмосфер (25,33 триллиона кПа).
  • 15,7 миллиона °C.

Именно благодаря солнцу на земле присутствует жизнь в самых разнообразных формах. Поэтому развитие энергетики в данном направлении позволит человечеству выйти на новый уровень. Ведь это позволит отказаться от использования топлива, некоторые его виды весьма токсичны. К тому же изменится уже ставший привычным ландшафт: больше не будет высоких труб тепловых электростанций и саркофагов АЭС.

Но что куда приятнее – исчезнет зависимость от закупок сырья. Ведь солнце светит круглый год, и оно везде.

Сила ветра

Здесь идет речь о преобразовании кинетической энергии воздушной массы, коей полно в атмосфере, в другой ее вид: электрическую, тепловую и прочую, которая будет уместна для применения в человеческой деятельности. Освоить силу ветра можно при помощи таких средств, как:

  • Ветрогенератор для производства электроэнергии.
  • Мельницы – получение механической энергии.
  • Парус – для применения в транспортных средствах.

Подобного вида альтернативная энергетика, вне всякого сомнения, может стать успешной отраслью по всему миру. Как и солнце, ветер – это тоже неисчерпаемый, но, что самое главное, тоже возобновляемый источник. В конце 2010 года суммарная мощность всех ветрогенераторов составила 196,6 гигаватта. А количество произведенного электричества – 430 тераватт-часов. Это 2,5 % от всего объема электроэнергии, произведенной человечеством.

Некоторые страны уже стали применять такую технологию на практике по производству электричества:

  • Дания – 28 %.
  • Португалия – 19 %.
  • Ирландия – 14 %.
  • Испания – 16 %.
  • Германия – 8 %.

Наряду с этим ведется освоение геотермальной энергетики. Ее суть заключается в производстве электричества посредством энергии, что содержится в недрах земли.

Заключение

Несмотря на радужные перспективы, сможет ли альтернативная энергетика полностью вытеснить традиционные методики? Многие оптимисты склоняются к общему мнению: да, так и должно произойти. И пусть не сразу, но это вполне возможно. Пессимисты же придерживаются иного взгляда.

Кто будет прав, покажет время, и нам остается надеяться на лучшее будущее, которое мы сможем оставить нашим детям. Но пока нас будет продолжать интересовать вопрос о том, что такое энергетик, значит, еще не все потеряно!

www.syl.ru

Энергетика — это… Что такое Энергетика?

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Доля выработки электроэнергии в России: красный — ТЭС(68 %), синий — ГЭС(16 %), зелёный — АЭС(16 %).

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[2]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[3].

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39 % всей электроэнергии мира, на базе угля — 27 %, газа — 24 %, то есть всего 90 % от общей выработки всех электростанций мира[5]. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на Гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков из них.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на Атомных электростанциях (АЭС), использующих для этого энергию цепной ядерной реакции, чаще всего урана.

По доле АЭС в выработке электроэнергии первенствует Франция[6], около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[7][8].

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство ( например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км² ) и малая единичная мощность[1]. Направления нетрадиционной энергетики[3]:

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[9]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции ( среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[10] ), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[11].

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[12]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[13].

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[14]. Такие условия могут быть реализованы в большинстве стран мира[15] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малыми котельными;
  • Электрическое, которое делится на:
  • Печное.

Тепловые сети

Тепловая сеть — это сложное инженерно—строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[1].

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в балансе мировой энергетики составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000г.)В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%[16].Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%[17].

Газообразное

Естественным топливом является природный газ, искусственным:

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

Твёрдое

Естественным топливом являются:

Искусственным твёрдым топливом являются:

Ядерное топливо

Файл:KKG Reactor Core.jpg

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[18], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[1][19].

Энергетические системы

Энергетическая система (энергосистема) — в общем смысле cовокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[20].

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[21]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[22] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[13][23].

Примечания

  1. 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е.В. Аметистова том 1 под редакцией проф.А.Д.Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2
  2. То есть мощность одной установки (или энергоблока).
  3. 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
  4. Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
  5. Данные за 2000 год.
  6. До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
  7. В.А.Веников, Е.В.Путятин Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
  8. 1 2 Энергетика в россии и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
  9. Эти понятия могут различно трактоваться.
  10. Данные за 2005 год
  11. А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
  12. ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
  13. 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9
  14. Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
  15. В зависимости от климата в некоторых странах нет такой необходимости.
  16. [1]
  17. http://www.map.ren21.net/GSR/GSR2012.pdf
  18. Диаметром около 9 мм и высотой 15—30 мм.
  19. Т.Х.Маргулова Атомные электрические станции. — Москва: ИздАТ, 1994.
  20. Энергосистема — статья из Большой советской энциклопедии
  21. ГОСТ 21027-75 Системы энергетические. Термины и определения
  22. Не более нескольких километров.
  23. Под редакцией С.С.Рокотяна и И.М.Шапиро Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.

См. также

dic.academic.ru

Энергетика — Википедия

Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]

  Уголь/Торф (39,3 %)

  Природный газ (22,9 %)

  Гидро (16,0 %)

  Ядерная (10,6 %)

  Нефть (4,1 %)

  Прочие (Возобн.) (7,1 %)

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.

Доля различных источников
в мировом производстве электроэнергии[1]
УгольПриродный газГЭСАЭСНефтьПрочиеВсего
1973 год38,3 %12,1 %20,9 %3,3 %24,8 %0,6 %6 131 ТВт*ч
2015 год39,3 %22,9 %16,0 %10,6 %4,1 %7,1 %24 255 ТВт*ч

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[4].

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция[8], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[9][10].

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность[2]. Направления нетрадиционной энергетики[4]:

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[11]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[12]), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[13].

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[14]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[15].

Видео по теме

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[16]. Такие условия могут быть реализованы в большинстве стран мира[17] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
  • Печное.

Тепловые сети

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[2].

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

wiki2.red

Энергетика — Википедия

Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]

  Уголь/Торф (39,3 %)

  Природный газ (22,9 %)

  Гидро (16,0 %)

  Ядерная (10,6 %)

  Нефть (4,1 %)

  Прочие (Возобн.) (7,1 %)

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.

Доля различных источников
в мировом производстве электроэнергии[1]
УгольПриродный газГЭСАЭСНефтьПрочиеВсего
1973 год38,3 %12,1 %20,9 %3,3 %24,8 %0,6 %6 131 ТВт*ч
2015 год39,3 %22,9 %16,0 %10,6 %4,1 %7,1 %24 255 ТВт*ч

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[4].

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция[8], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[9][10].

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность[2]. Направления нетрадиционной энергетики[4]:

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[11]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[12]), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[13].

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[14]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[15].

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[16]. Такие условия могут быть реализованы в большинстве стран мира[17] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
  • Печное.

Тепловые сети

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[2].

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %[18].Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %[19].

Газообразное

Естественным топливом является природный газ, искусственным:

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

Твёрдое

Естественным топливом являются:

Искусственным твёрдым топливом являются:

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[20], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[2][21].

Энергетические системы

Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[22].

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[23]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[24] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[15][25].

См. также

Примечания

  1. 1 2 2017 Key World Energy Statistics (PDF). http://www.iea.org/publications/freepublications/ 30. IEA (2017).
  2. 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
  3. ↑ То есть мощность одной установки (или энергоблока).
  4. 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
  5. ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
  6. ↑ Данные за 2011 год.
  7. ↑ World Energy Perspective Cost of Energy Technologies (англ.). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Проверено 29 июля 2015.
  8. ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
  9. В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
  10. 1 2 Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
  11. ↑ Эти понятия могут различно трактоваться.
  12. ↑ Данные за 2005 год
  13. А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
  14. ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
  15. 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
  16. ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
  17. ↑ В зависимости от климата в некоторых странах нет такой необходимости.
  18. ↑ https://web.archive.org/web/20110626032546/http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf
  19. ↑ Архивированная копия. Проверено 4 декабря 2014. Архивировано 15 декабря 2012 года.
  20. ↑ Диаметром около 9 мм и высотой 15—30 мм.
  21. Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
  22. Энергосистема — статья из Большой советской энциклопедии. 
  23. ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
  24. ↑ Не более нескольких километров.
  25. Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.

Ссылки

wikipedia.green

Слово ЭНЕРГЕТИКА — Что такое ЭНЕРГЕТИКА?

Слово состоит из 10 букв: первая э, вторая н, третья е, четвёртая р, пятая г, шестая е, седьмая т, восьмая и, девятая к, последняя а,

Слово энергетика английскими буквами(транслитом) — energetika

Значения слова энергетика. Что такое энергетика?

Энергетика

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов.

ru.wikipedia.org

Энергетика энерге́тика совокупность отраслей, снабжающих экономику энергоресурсами. В неё входят все топливные отрасли и электроэнергетика с их предприятиями и связями, обеспечивающими разведку, освоение, производство…

Географическая энциклопедия

Энергетика Энергетика — совокупность топливной промышленности, электроэнергетики, а также средств доставки топлива и энергии. Энергетика — основа современного хозяйства. Современная промышленность становится все более энергоемким производством…

Словарь финансовых терминов

Энергетика России

Энергетика России — отрасль российской экономики. Традиционной, исторически самой значимой отраслью является топливная энергетика.

ru.wikipedia.org

Энергетика экосистем

Энергетика экосистем Энергетика экосистем — обеспеченность ценоэкосистем энергией и ее использование. Включает следующие процессы: получение энергии из двух основных источников…

Экологический словарь

Энергетика экосистем — обеспеченность ценоэкосистем энергией и ее использование. Включает следующие процессы: получение энергии из двух основных источников…

Экологический словарь

Энергетика экосистем — обеспеченность экосистем энергией и ее использование. В экосистемах различаю следующие энергетические процессы: — получение энергии солнечной радиации (фотосинтез) или энергии реакций окисления неорганических веществ…

glossary.ru

АТОМНАЯ ЭНЕРГЕТИКА

АТОМНАЯ ЭНЕРГЕТИКА, область техники, основанная на использовании реакции деления атомных ядеp для выработки теплоты и пpоизводства электpоэнергии. В 1990 атомными электростанциями (АЭС) мира производилось 16% электроэнергии.

Энциклопедия Кругосвет

Ядерная энергетика

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

ru.wikipedia.org

ЯДЕРНАЯ ЭНЕРГЕТИКА — отрасль энергетики, в к-рой источником получаемой полезной энергии (электрической, тепловой) является ядерная энергия, преобразуемая в полезную на атомных энергетич. установках: атомных электростанциях (АЭС)…

Физическая энциклопедия. — 1988

ЯДЕРНАЯ энергетика (атомная энергетика) — отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую.

Большой энциклопедический словарь

Солнечная энергетика

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде.

ru.wikipedia.org

ГЕЛИОЭНЕРГЕТИКА ГЕЛИОЭНЕРГЕТИКА (Г.) — получение электрической или тепловой энергии за счет солнечной энергии, одно из самых перспективных направлений нетрадиционной энергетики.

Экологический словарь

ГЕЛИОЭНЕРГЕТИКА (Г.) — получение электрической или тепловой энергии за счет солнечной энергии, одно из самых перспективных направлений нетрадиционной энергетики.

Экологический словарь

Водородная энергетика

ВОДОРОДНАЯ ЭНЕРГЕТИКА, использует водород как носитель энергии. Водородная энергетика также включает: получение Н2 из воды и др. прир. сырья; хранение Н2 в газообразном и сжиженном состояниях или в виде искусственно полученных хим. соед.

Химическая энциклопедия

Водородная энергетика — развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми…

ru.wikipedia.org

ВОДОРОДНАЯ энергетика — включает получение Н2 из воды и другого природного сырья с затратой солнечной, ядерной или др. энергии, его хранение и использование как топлива, а также в химических способах передачи энергии.

Большой энциклопедический словарь

Геотермальная энергетика

ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА (Г.э.) — получение тепловой или электрической энергии за счет тепла земных глубин, один из вариантов нетрадиционной энергетики.

Экологический словарь

Геотермальная энергетика получение тепловой или электрической энергии за счет тепла земных глубин, один из вариантов нетрадиционной энергетики. Экономически эффективна Г.э. в районах…

Экологический словарь

МИНИСТЕРСТВО ЭНЕРГЕТИКИ

МИНИСТЕРСТВО ЭНЕРГЕТИКИ ENERGY, DEPARTMENT OF М.э. создано в соответствии с Законом об образовании М.э., принятым 4 августа 1977 г. (42 U.S.C., 7131) и вступившим в силу с 1 октября 1977 г. во исполнение Распоряжения № 12009 от 13 сентября 1977 г.

Энциклопедия банковского дела и финансов

МИНИСТЕРСТВО ЭНЕРГЕТИКИ — (Department of Energy) Министерство британского правительства, ответственное за: энергетическую политику; деятельность Управления по атомной энергии; атомную энергетику…

Словарь бизнес терминов. — 2001

Русский язык

Энерге́тика, -и.

Орфографический словарь. — 2004

Примеры употребления слова энергетика

Он отметил, что национальная энергетика только в начале пути к реализации этого проекта.

Энергетика этого дня позволит Вам совершать одновременно множество операций.

Концерн действует в таких областях, как индустрия и энергетика, а также в сфере здравоохранения.

По его словам, ветряная энергетика сегодня переживает бум в Бельгии.

Направление Строительные технологии и Энергетика также увеличивает масштабы локализации в России.

На протяжении всего вечера в зале царила необычайная энергетика и драйв.

При этом энергетика музыкальных композиций Offspring, как всегда, просто потрясает.


  1. энергетиками
  2. энергетикам
  3. энергетиках
  4. энергетика
  5. энергетик
  6. энергетический
  7. энергида

wordhelp.ru

Энергетика — Психологос

Фильм «Тот самый Мюнхгаузен»

Энергетика — это высокий тонус, высокий внутренний темпоритм, готовность и желание немедленно действовать. Высокая энергетика — показатель благополучия: здоровья, наличия жизненной энергии, хорошего самочувствия и видения жизненных перспектив. Часто — показатель собранности человека, готовности решать задачи, преодолевать жизненные препятствия, идти к победе. Энергетика — одна из главных составляющих уверенности в себе и личностного потенциала в целом.

Энергетику не нужно путать с жизненной энергией. Жизненная энергия — достаточно стабильная характеристика человека, аналогична особенностям темперамента, а энергетика — характеристика ситуативная: утром может быть никакая, а к вечеру человек разошелся!

Энергетику легче проявлять тому, у кого все в порядке с жизненной энергией, однако при желании энергетику обнаружит самый вялый меланхолик, если поставит себе такую задачу либо его вынудит жизнь. Увидите на горизонте волну цунами, от которой нужно спасаться — бодро побежите?

Как делается высокая энергетика? Энергетика живет у вас и в душе, и в теле, так вот: начните с тела. Распрямитесь, расправьте плечи, улыбнитесь и скажите себе «Я радость!» Приучите себя ходить энергичнее, а по лестнице — только бегать! Если вы вспомните свои любимые бодрые мелодии и привыкнете их напевать — хорошо и вслух тоже, то ваша жизнь станет бодрее, а вы — увереннее.

Интересно, что средства повышения энергетики являются одновременно и ее признаками: посмотрите на тело энергичного человека, повторите стиль его жестов, движений, стойки и поведения, и ваша энергетика повысится. На что стоит особенно обратить внимание? Когда человек стоит энергично, его вес тела на носках, корпус готов податься вперед. Если энергичный, уверенный в себе человек выходит в круг и там поворачивается в разные стороны, он чаще это делает через шаги вперед, а не назад (как ни странно, шаги назад — достаточно частое явление). У него быстрые и точные жесты, способность к быстрым движениям. Во время жестикуляции руки поднимаются легко, локти не висят. У энергичного человека живые глаза, голос громкий, звонкий (попробуйте!) либо с высоким внутренним темпоритмом.

Каждый ли человек, всегда ли человек может повысить свою энергетику? За редкими исключениями — да. Опыт показывает, что для повышения энергичности (по крайней мере ненадолго) здоровому человеку не нужно никаких внешних источников: когда нужно, энергетика берется ни откуда, «из воздуха». При этом запас энергетики у нас разный, и повышать свой запас энергетики полезно всегда. Для этого следим за своим здоровьем и жизненной энергией в целом, а также создаем условия для высокой энергетики. Какие?

Прекрасная привычка — жить на высоком эмоциональном фоне, с воодушевлением, вдохновением, азартом и задором. Всегда важно видение целей, перспектив и возможностей: просто так энергично бегать в колесе надоест даже белке. Если видеть перед собой радужные перспективы, понимать, что от действий есть смысл и он вполне реален — энергетика будет выше. Хорошее окружение рядом — очень мотивирует на подвиги. Великолепный ход — использовать возможность заряжать энергетикой людей рядом. Если вам каждое утро нужно заряжать бодростью еще не вполне проснувшихся детей, более всего энергией зарядитесь вы сами. Ну, и самый простой способ взять энергию, когда сил нет никаких — простая прогулка по лесу и выспаться.

Блоки энергетики

Бывает, что у бодрого и здорового человека вдруг энергетика исчезает: человек опускает руки, у него тухнут глаза, нет сил. Как правило, это не само по себе исчезновение жизненной энергии, а ее блокирование. Блок может сработать по причине сработавшего негативного якорения, либо создаться как неосознанная протестная реакция, месть жизни или привлечение к себе внимания. См.→

Смотри Условия высокой энергетики

Внутренние чувства и энергетика

Энергетика человека делает внутренние чувства человека более сильными, яркими и выразительными. При определенном осмыслении и энергетика может переживаться как чувство (например «чувство бодрости, энтузиазм»), но чаще сама по себе энергетика — еще не чувства, а только фон, который чувства проявляет или гасит. Человек депрессивный, без энергии — человек без чувств, все его чувства умерли вместе с умершей в нем энергетикой. Человек с высокой энергетикой не всегда переживает чувства, но если переживает, то его переживания глубже и ярче. См.→

Энергетика лидера

Энергетика лидера должна быть всегда немного выше, чем энергетика окружающих людей. Смотри Энергетика лидера

www.psychologos.ru

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *